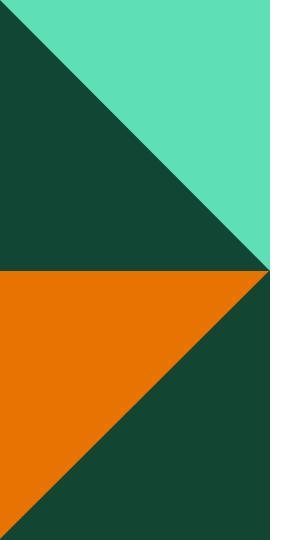
AUTOMATED LAND USE

PREDICTION MODEL

Umme Kulsum GISC 6388

AGENDA

Create land use land cover map


Compare them

Detect change

Use change to Predict and Create an

Automated Land Use Prediction Model

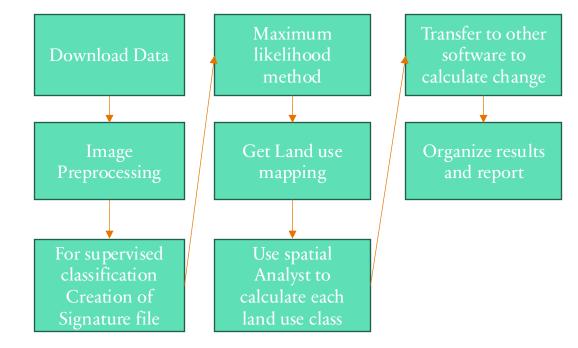
INTRODUCTION

The popularity of satellite images has been seeing the upward trend since the early 2000s and is still ongoing. There are a lot of software including ArcGIS Pro, ERDAS Imagine, ENVI etc. that works with satellite images to detect changes and predict future land use. This proposal aims to introduce a model that will create a model to predict future land use change using arcpy.

OBJECTIVES

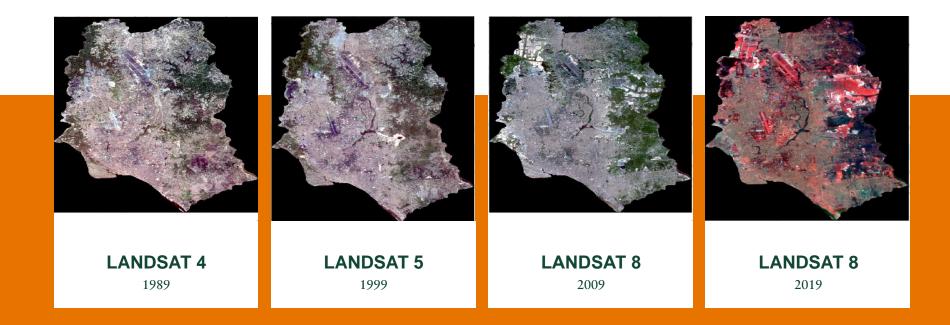
Previous

- Create land use land cover maps based on signatures (created on ArcGIS Pro/ ERDAS Imagine)
- Train the prediction model to detect changes using Random Forest Classifier
- Use the model to predict future land use
- Optional: Assess accuracy of the model

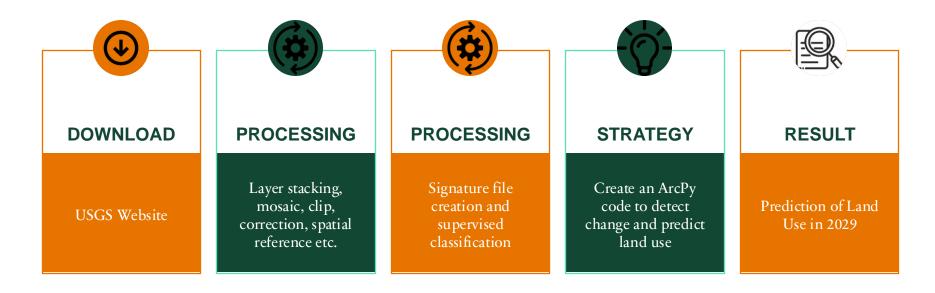

OBJECTIVES

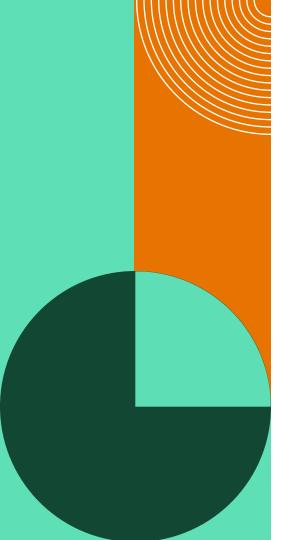
Achieved

- Create land use land cover maps based on signatures (created on ERDAS Imagine)
- Detect changes using pixel values
- Use those changes to predict a future map


MOTIVATION

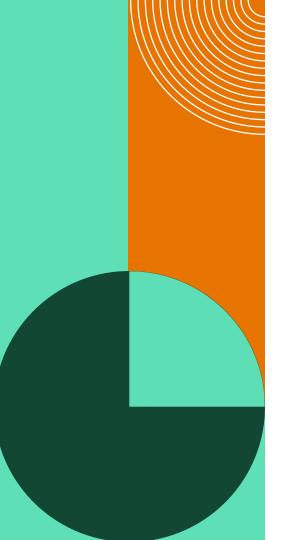
- General Work flow of calculating land use land cover change
- There are several other steps that have been excluded



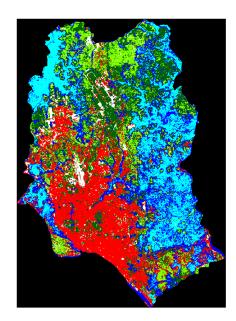

TO GET A PREDICTED LAND USE AT ONCE

DATA

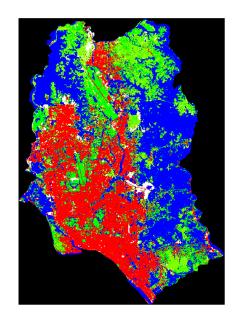
MY WORKFLOW

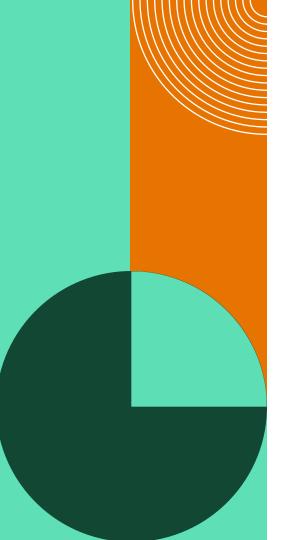


LAND USE LAND COVER

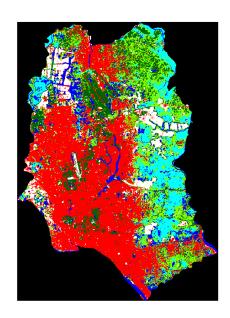

- Water (Value 1)
- Wetlands (Value 2)
- Built-up Areas (Value 3)

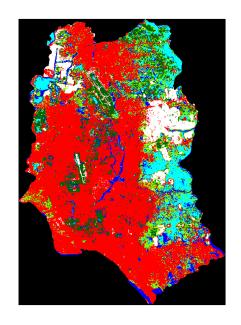
- Barren Lands (Value 4)
- Agricultural Land (Value 5)
- Vegetation (Value 6)





LULC





LULC

HOW I GET THERE

.....

ARCPY

- All the classified images were converted to arrays
- Resized and resampled to match the resolution and dimensions
- Transition was calculated

ARCPY

- Pixel counts were stored in a dictionary based on class names and values were
- The change was calculated based on the difference of count of pixels per class from later year to previous year

ARCPY

- The code gave a list of change rates
- That was used to predict land use land cover for the year 2029

GISC Spring 2024 - UTD

Sample Code

import arcpy import numpy as np from PIL import Image

Check out Spatial Analyst extension

arcpy.CheckOutExtension("Spatial")
arcpy.env.workspace = r"K:\gis_work\Project6388\LULC"
arcpy.env.overwriteOutput = True

Load classified raster data for all years classified_1989 = arcpy.Raster(r"1989.img") classified_1999 = arcpy.Raster(r"1999.img") classified_2009 = arcpy.Raster(r"2009.img") classified_2019 = arcpy.Raster(r"2019.img")

Convert raster data to NumPy arrays

array_1989 = arcpy.RasterToNumPyArray(classified_1989) array_1999 = arcpy.RasterToNumPyArray(classified_1999) array_2009 = arcpy.RasterToNumPyArray(classified_2009) array_2019 = arcpy.RasterToNumPyArray(classified_2019)

Resize or resample all arrays to have the same shape (using interpolation) target_shape = (1243, 1725) # Define the target shape for resizing

array_1989_resized = np.array(Image.fromarray(array_1989).resize(target_shape))
array_1999_resized = np.array(Image.fromarray(array_1999).resize(target_shape))
array_2009_resized = np.array(Image.fromarray(array_2009).resize(target_shape))
array_2019_resized = np.array(Image.fromarray(array_2019).resize(target_shape))

Define class names and their corresponding values

class_names = ["unclassified", "water", "wetland", "built up", "bare", "agriculture", "vegetation"]
class_values = [0, 1, 2, 3, 4, 5, 6] # Corresponding values for each class

Initialize dictionaries to store pixel counts for each transition and land use class transitions = ["2019-2009", "2009-1999", "1999-1989"] Change_counts = {transition: {class_name: 0 for class_name in class_names} for transition in transitions}

change_rates = {transition: {class_name: 0 for class_name in class_names} for transition in transitions}

Calculate pixel counts for each transition and land use class

for transition in transitions: current_year = int(transition.split("-")[0])

import arcpy import numpy as np from PIL import Image from arcpy.sa import *

Check out Spatial Analyst extension

arcpy.CheckOutExtension("Spatial")
arcpy.env.workspace = r"K:\gis_work\Project6388\LULC"
arcpy.env.overwriteOutput = True

Load classified raster data for all years

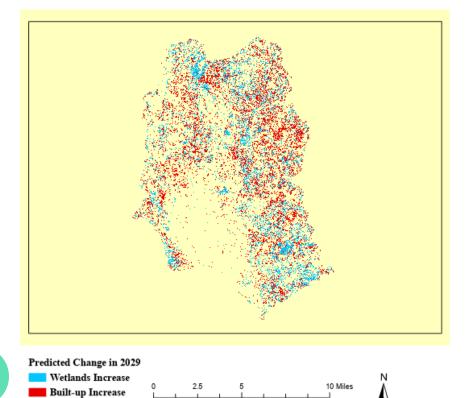
classified_1989 = arcpy.Raster(r"1989.img")
classified_1999 = arcpy.Raster(r"1999.img")
classified_2009 = arcpy.Raster(r"2009.img")
classified_2019 = arcpy.Raster(r"2019.img")

Convert raster data to NumPy arrays

array_1989 = arcpy.RasterToNumPyArray(classified_1989) array_1999 = arcpy.RasterToNumPyArray(classified_1999) array_2009 = arcpy.RasterToNumPyArray(classified_2009) array 2019 = arcpy.RasterToNumPyArray(classified_2019)

Resize or resample all arrays to have the same shape (using interpolation) target shape = (1243, 1725) # Define the target shape for resizing

array 1989_resized = np.array(Image.fromarray(array_1989).resize(target_shape)) array 1999_resized = np.array(Image.fromarray(array_1999).resize(target_shape)) array_2009_resized = np.array(Image.fromarray(array_2009).resize(target_shape)) array_2019_resized = np.array(Image.fromarray(array_2019).resize(target_shape))


Define class names and their corresponding values

class_names = ["unclassified", "water", "wetland", "built up", "bare", "agricult class_values = [0, 1, 2, 3, 4, 5, 6] # Corresponding values for each class

Define change rates manually based on printed results and include signs change_rates = { "2019-2009": {

"unclassified": 0.0, # No change
"water": -0.28, # Decreased by 0.28%
"wetland": +2.39, # Increased by 2.39%

GISC Spring 2024 - UTP PREDICTED MAP

LIMITATION

- A geoprocessing tool would have been more convenient
- The results of the predicted land use for the year 2029 only consists of wetlands and built-up areas
- According to the model those are the only to land use land cover class that are increasing
- Although built up areas are undoubtedly increasing in the study area increase of wetland is doubtful
- The accuracy of the model has not been assessed

THANK YOU

Umme Kulsum